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Exact Calculation of the Uncertainty on the
Input Reflection Coefficient of Arbitrary

Two Ports Due to Mismatches and
Arbitrary Reference Planes

HERMAN TROMP

Abstract-A specific problem of worst case mmfysfs of microwave

networks is deaft with, Exact forrmdas are derived for the upper and lower

ffrrdtR of the mnpfitude of the input reflection coefficient of an arldtrary

two PO* in the presence of mismatched source and load and/or arldtrary
reference planes. The derivation is based on eertafrs properties of the

bifinear transformation.

I. INTRODUCTION

I
T WAS SHOWN by Bandler, Liu, and Tromp [1] that,

in the worst case analysis of microwave two ports, the

effect of a mismatched source and load should not be

neglected, as compared with the effect of physical toler-

ances and model uncertainties. Explicit formulas were

derived for the extrema of the modulus of the input

reflection coefficient of a lossless two port, referred to real

normalization impedances, under various conditions of

source and load mismatches. In this paper, we shall gener-

alize those formulas.

We will consider the situation depicted in Fig. 1. The

S-matrix of the two port is referred to Z; and Z;. Source

and load impedances Z~ and Z~ are represented by their

reflection coefficients p~ and p= with respect to 21 and Z2,

respectively. Zi and Z; (i= 1,2) may be complex. Let

P.s = IPsld’+”, PL = /pL]d’’f”. (1)

We assume that +~ and rp= can vary between O and 21T

and that ]p~I and lp~ I are either given or limited by

OK Id ~ 1%]+> o< M ~ IPLI+. (2)

This corresponds to the realistic situation, where only a

VSWR or a maximal VSWR is specified for source and

load. We are interested in the input reflection coefficient

Z,*– z:
f,. = Zin+ z~ (3)

and we shall derive expressions for the extrema of Iplnl,

i.e.,

Manuscript received May 29, 1978; revised September 8, 1978. This
paper is based on material presented at the 1978 IEEE-MTT-S Interna-
tional Microwave Symposium, Ottawa, Canada, June 27–29, 1978. The
work was supported by a grant of the Belgian NFWO (National Re-
search Fund).

The author is with the Laboratory of Electromagnetism and Acoustics,
Univeristy of Ghent, Ghent, Belgium.

‘SL$EE
P.m
z.m

Fig. 1. Two port with mismatched source and load.
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Fig. 2. Two port with arbitrary reference planes.

lPinlM = &J lpml~ Ipinlm = ~~ bid (4)

or, alternatively,

lPinl+ = ,P~lfi~,oL Ipinl> lPnrl - =
,> ,Psl>ms>f#Ylpinl” ‘5)

Another situation which shall be dealt with is shown in

Fig. 2, where the lengths of the connecting lines at input

and output (given by phase angles ~1 and $2) are also

arbitrary. We shall consider only real Zi, Z,’ (i= 1,2) in

this case. The extrema in (4) and (5) will be taken over +1

and 42, too. Both completely arbitrary positions of the
reference planes and positions affected by a given uncer-

tainty will be considered.

The expressions to be derived are useful for worst case

analysis and fit into the general formulation of the toler-

ance problem as given by Tromp [2], [3]. This means that

a tolerance optimization procedure, as described by Band-
ler et al. [1], [4], [5] and Pinel and Roberts [6], can lead to

a compromise between the tolerances within the network

(i.e., its cost) and the quality of source and load. To a

certain extent the results, especially for the case of Fig. 2,
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can be used to design a subnetwork of a large network

separately, allowing for an uncertainty on the sub-

networks, connected to it, and on the length of the con-

necting lines. Our derivation [3] will be based on certain

properties of the complex bilinear transformation.

II. BILINEAR TRANSFORMATIONS

Consider the transformation (w, z, a, b, c, d complex)

az+b~.—
cz+d

(6)

which is known to transform circles into circles. Without

loss of generality, we can consider

w = R&””, O<4<2T (7)

as a circle in the w plane. The corresponding circle in the

z plane (Fig. 3) is described by

z = ZO+ rd’e, 0<8<277 (8)

with

R2c*d–a*b Rlad–bcl

‘0= /a]2-R2\c12 ‘ ‘= []a12-R21c121
(9)

as its center and radius, respectively.

The extrema of Izl for 0< @<27 are determined by the

points (see Fig. 3)

()
ZM=ZO l+fi (lo)

()
Zm=zo I-fi (11)

and are given by

lz~]=M~lzl=lzo[+r (12)

lz~l=~lzl=llzol-rl. (13)

The corresponding points in the w plane are found

substituting (10) and (11) into (6). One can prove that Iz~l

and Iz~ 1, as functions of R, behave as shown in Table I.
Typical curves are given in Fig. 4. If we now let R vary

according to

R-<R<R~ (14)

then the extrema of IZI over all @ and all R are

Izl+ = I-$:x 1IZM(R ‘)1, if R + < :

I ‘,~= ifR–< C <Rf (15)
c

Izl-=iyirlzl=

1IZM(R-)l, if R-> ~

lzm(R ‘)1> if R+< ~
d

o, if R-< : <R+. (16)

lztn(R-)l, ifR–> ~
d
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Fig. 3. Transformed circle in the z plane.
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Fig. 4. Bilinear transformation: limits of \z \ (typical).

TABLE I
BEHAVIOROFXIZM(R)I N IzJR)I

case1:1<1:1

~
Case :1‘ 1:1

m
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TABLE 11 We have
zMAmzm wHsNarg a+argd=argb+argc

_ ap+b

case 1:1<1:1 Case
1:1 ‘ 1:1

‘L– cp+d

11~110 R>R
0

R<R R>R
0

with
0

‘M ‘B ‘A ‘A ‘B a =(1 + S{lAJ(I + S;2A2) – S{2S;,A,A2

‘m ‘A ‘B ‘B ‘A
b= – (At+ S(l)(l + S@z) + 5j25i1A2

c =(1 + SjlAJ(Af + Sj2) – S~2S~1Al

975

(24)

d= – (A?+ S[J(& + %) + 5[25;1
The following special case of the general expressions (12)

and (13) is of interest: if s{, = yfs,,, s’j2= y;s22, S;2S;1 = y:y; s,2s2,

.q’*+z:
arga+arg d=argb+argc (17)

A_ z,’–z~
Yi= z;+zi ‘ ‘– z,’+zi ‘ i=l,2. (25)

then the values of IZMI and lz~ ] are given by Table II,

where Equation (24) is a bilinear transformation. The limits

lb/-R[d/
hi and [Pml of IPI over all @L can be found from (12) and

lZA1= lal_Rlcl (18) (13), and the limits Ipl+ and Ipl- over all @L and all IPLI

from (15) and (16) (with R - =0, R + = lpL[+). The combi-

/b/+Rld[

IZB1= la[+R]cl

nation of these extrema with those derived from (22)

(19) yields exact expressions for the extrema of Ipin[. We find

and

l!RO= $ .

Consider now the transformation

(20)

@&_ be

z =
a–we

(21)

which does not transform circles into circles [3], but yields

the same Izl as (6). This means that all results, (12)–(20), lPml.M=

also apply for (21), which we therefore call the pseudobi-

linear transformation.

The results of this section can be applied to a number

of problems in microwave network theory, such as the

worst case analysis problems of Section I.

K+(lpMl, lp~l), if lpMl <1< —
IL

K-(lpMl, lp.J, if lpMl < —,;~, <1

‘r‘f*<‘PM’<list
~+(lPml,lPSl)j if & <1 <]pml (26)

K-(lPmlj IPsI), if & <]pm[ <1

orifl<—
1:.1

< Ipml

III. EFFECT OF MISMATCHES

I

00, if Ipml < J- < /pM/

In Fig. 1, we have
IPSI

P–P;
lPinl = —

1 – PPS

where p is the input reflection coefficient with respect to

Z:, i.e.,

Z,n–z,

‘= Zin+zf “

(22)

(23)

Equation (22) represents a pseudobilinear transformation.

The results of Section II can be used to find the extrema

of lpi~l, for all-possible PS and for a given p. Special case

(17) applies here. From (18) and (19), it is clear that the
extrema of Ipinl are a function of Ipl only.

p depends only on pL and Ipl can be extremized over all
possible pL, independently of ps. As a result of this, the
effects of the variations of the source and load on the

input reflection coefficient can be separated. It turns out

that this is not possible for the effect on the insertion loss.

,-
~-(lPMl,lPSl), if IPMI <IPsI ~ 1

or if 1< lPJ < Ipsl

K+(lpM1,lpsl), if IPMI <1 ~ IPSI

Ipinlm=< K-(IPJ,IPJ, if lPsl < IPJ G 1 (27)

or if 1< lp~l < lp~l

K+(IPJ,IPJ), if Ips.1<1< Ipml

o, if lPml ~ IPSI ~ IP.MI

with the functions

K+(xl, xZ)=
x, +X2

1+X,X2
(28)

X,—X2
K-(x1,x2)=

1–X,X2
=K+(xl, ‘X2). (29)

We also find
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(K+(IPI+JPSI+)!

iflpJ+< ~ andjpl+<l<—
IP:I+

K

lPinl+‘“

(IPI+>IPSI+)!

if lpLl+ < ~ and

‘ither ‘p’+< IP:I+ < ]

Orl<’~’+<lP:l+

I iflp~l+> ~ orlpl+>—
IP;I+

b(lP1-JPsl+))

if lp~l+ < ~ and

I either 1< lp~l+ < Ip] -

(30)

lPinl- =
{

orlp~l+<lpl-<l

K+(IPI->IPSI +)>
(31)

iflp~l+< ~ andlp~l+<l<lpl-

1
0,

if lp~l+ > + or lP]- < lp~l+

In many practical situations, (26), (27), (30), and (31) can

be simplified considerably, e.g., when Z~ and Z~ are

passive.

IV. INDEFINITE REFERENCE PLANES

Consider Fig. 2, with Z, and Z; (i= 1,2) real. Assume

that besides +~, +~, lp~l, and lpLl, also +1 and +Z are

variable according to

W < +i < $i+, i=l,2. (32)

Now let pj be the reflection coefficient of Z: with respect

to Zj and p: that of Z~ with respect to Z; (see Fig. 2).

Then
p; Lp;e-2J4, (33)

and

(34)

Equation (34) represents again special case (17) of the

bilinear transformation. According to the theory of Sec-

tion II, the region in the complex plane, within which p:

can vary, due to the variations of p~, is circular. The

region of all possible pi follows then immediately from
(32) and (33). The two cases of interest are indicated in

Fig. 5. In particular, the extrema Ip:[ - and lp’sl+ of

lP~l = lP~l, over all possible p~, can be obtained from Table
II. The same can be done at the load.

If the reference planes are completely arbitrary, then

+,+ – +i- > T, i=l,2. (35)

Fig. 5. Indefinite reference planes; possible regions for p{ and p$
(—.—. if @~–@I >7f), (— if f#I~– @[ <7).

We arrive at a situation similar to that of Fig. 1, where the

moduli of the source and load reflection coefficients (in

ca.su pj and pi) can now vary between (nonzero) lower

and upper limits and where their phases are completely

arbitrary. The derivation of Section III car~ be repeated,

now using R – #O in (15) and (16). The resulting formulas

for the extrema of Ip,nl become rather complicated but can

easily be implemented in a computer program.

If the reference planes are affected by an uncertainty,

but not completely arbitrary, i.e., if, for any i, +,+ – +,- <

m, the extrema of lp,n\ can be calculated as follows.

1) Assume (35); calculate the extrema of Ipinl, as indi-

cated above, as well as the p: and pi yielding those

extrema, by appropriate substitution of (10) and (11) in

(6).

2) If both pj and pi are within their possible region (see

Fig. 5), the extrema calculated in 1) are the true limits of

Ipml.

3) If either p: or pi is outside its possible region, take

for the corresponding +, alternatively @i- and +,+, and

solve the resulting extremum problems. This implies either

a situation where both +1 and @2are fixed, for which the

formulas of Section III apply, or a situation where one @i

is fixed and the other variable, according to (35), which is

a special case of step 1). In the latter case; steps 2) and 3)

have to be repeated eventually. As a result of this proce-

dure, several extremum problems are solved. The true

bounds of Ipin] are finally found by inspection of the

different solutions which correspond to possible pj and pi.

Explicit formulas for the extrema of Ip,nl are not available

in this case, but the procedure can be implemented in a

computer program in a straightforward way.

V. LOSSLESSTwo PORTS

If Zi = Z,’ (i= 1, 2) are real and if the two port is lossless,

(24) is also reduced to special case (17). The resulting

formulas become simpler. We find
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lPinlM=”

lPinlm=

with

and

K+(l&21, KP), if KP <1

~-(l~221JQ7
‘f$’>l and K’< 1;221

K-(/s22], Kp), —‘f% > l~:2\

co,
‘f l<K’~&K’

K+(IS221, KP), if KP>1

K-( ISJ,K P), if KP < 1%1

K-(l~221, ~q), if Kp <1 and Kq > 1S22[

o, if K~<l S221<KP<l

KP=K+(IPSI>IPLD

Kq=K-(lp~l,lpLl)

@+(l%21J;)> if lp~l+ <1 and lp~l+ <1

(36)

(37)

(38)

(39)

IK-(l S221,Kq+), if KP+ >1, lp~l+lpLl+ <1

lPinl+= (40)
and K;< &

[ ~, in all other cases

lPinl- =
I

K ‘(l S221,KP+), if KP+ < I%d

o, if KP+ > IS221
(41)

with KP+ and Kq+ analogous to KP and Kq. If Z~ and Z~

are passive, the formulas given in [1] are found.

VI. EXAMPLE

As an example, we consider the transistor HP 35821E

(bias Ic = 15 mA, VCE = 15 V). Fig. 6 gives the limits of

/Pinl, if IPS]+ = IPL[+ =0.2, in two cases. lpi~lM and Ipin]+
coincide, as well as lpi,l~ and /pinl –. The result of a

Monte–Carlo analysis, where $~, +~, lp~l, and lp~l were

varied at random in their intervals, is also indicated. One

thousand sample points were used. If only ~~ and +~ are

assumed variable, the results of a Monte–Carlo analysis

with 1000 sample points cannot be distinguished from the

bounds calculated with our formulas. Fig. 7 illustrates the

effect of arbitrary reference planes. Curves a correspond

to reference planes fixed at a nominal position and curves

c to completely arbitrary reference planes. For curves b, a

given error on the position of the reference planes was

assumed. In this case, both ~1 and +2 should have one of
their extreme values to yield the extrema of Ipinl.

VII. CONCLUSION

Explicit formulas and numerical procedures were de-

rived for the calculation of the limits of the input reflec-

tion coefficient of an arbitrar two port, under various

A Ipin[

\%r[M=l pin]+
075- b

a ----- _
----- -- ----- _-

---

t

M._.—.—.—.—’—. —.— ._

(250 “ -

b -- —-- -. ----- ----- -----

025-
Ipirllrn= [Pinj -

o.o~
1 2 3 L f (GHz)

Fig. 6. Input reflection coefficient of 35821E, with lp~l+= lpLl+ =0.2.
Curve a: Zj=Z/=50; curve b: Z1=50+0.5j, Z2=49–2j, Z[=45+
5~, Zj = 55 – 7j. (- -Monte-Carlo, case (a), 1000 sample points.)

[Pirrl

m- -

[pin/ + a

Is,,l
.-. -.— ‘—”—’— ‘-.-.—. -,

wo- -’-’-

a

b
/

/Pi~/-

U!5- C

00 f (GHz)

1 2 3 4 5

Fig. 7. Input reflection coefficient of 3582 lE, with lp~l+= lpL[+ = 0.2,
Z,= 50, Z;= 45, Z2 = 49, Z;= 55. Curve a: fixed reference planes;
curve b: indefinite reference planes, 10°< @,, <40° and 90°< +Z <
150°; and curve c: indefinite reference planes, 0°< +1, 02<360°.

conditions of source and load. The example shows that

even moderate mismatches or uncertainties on the posi-

tion of the reference planes can have a considerable

effect. They should be accounted for in any realistic
design procedure.
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An Approximate Dynamic Spatial Green’s
Function for Microstriplines

Y. LEONARD CHOW, MEMBER, IEEE, AND IBRAHIM N. EL-BEHERY

Abstract-A dynamic model of both charge aud current fmageR is

constructed to give rise to a frequency-dependeut dyadic Greeu’s function

in the space domain for rnicrostripfiues. while the spatial Green’s function
is appt’oxfmatq its image model is very simple, and the propagation

constants calculated from it agree well with published results.

L INTRODUCTION

T
HE DYADIC Green’s function in the spectral

domain for microstriplines has been derived by Den-

linger [1]. The expression of this Green’s function, how-

ever, while being exact, is quite complicated making its

use difficult in arbitrarily shaped structures.

The dyadic Green’s function in the space domain, on

the other hand, may overcome this difficulty, but it is

generally not known in a closed form. A static equivalent,

however, has been derived by Silvester [2] from a model of

charge images. The simplicity of this model and the good

physical insight it gives naturally suggest the possibility of

its extension to a dynamic model that can reasonably

approximate the dyadic Green’s function at the higher

frequencies.

While such an approach may be used to construct

dynamic Green’s functions in three dimensions for arbi-

trarily shaped microstrip structures, this paper, being a

first attempt in this direction, considers only the extension

to the Green’s function in two dimensions for microstrip-

lines.

In this paper the two-dimensional Green’s function is

defined as the kernel function of the integral equation

Manuscript received May 29, 1978; revised July 28, 1978. This work
was supported in part by the Communications Research Center of
Canada through the Department of Supply and Services under Contract
08SU. 36100-7-9511 and in part by the National Research Council of
Canada under Grant A3804.

The authors are with the Department of Electrical Engineering, Uni-
versity of Waterloo, Waterloo, Ont. N2L 3G1, Canada.

Y

EiliLix

x’

&
.

il. ” \
‘O”L

z x -J.

///j’ //$ ;?z~?;+“(’’-’)ro/ //’/ //,
///+//,.

%& +’(1-’)m
// ‘
/ //// “/<

=
*“

–~. .2#zJ_

**0 ‘e..

+K(Kz-l)rfo +K(K-I)UO

+K2(K2-l)ao +K2(K-I ).70

(a) (b) (c) (d)

Fig. 1. (a) A line current ~. on a grounded dielectric substrate. (b) The
equivalent of (a): a dielectric substrate with two true currents. (c) The
mojel for the outside (dashed) region with true currents and charges
*Jo and t U. and image charges o.. The magnitudes of the images
are indicated with K= (1 – {,)/(1 + c,). The separation between adja-
cent images is 2d. (d) The model for the inside (dashed) region.

Eta.(x)= J:(x,x’)”jo(x’)dx’ (1)

where, according to the geometry of Fig. l(a),

5(X,X’)=

[

Gxx(x, x’) GXZ(X,X’)

Gzx(x,.x’) Gzz(x,x’) 1
(2)

and where ~o(x) and ~t~~(x) are, respectively, the density

of the current vector and the tangential electric field

vector on the surface of the grounded dielectric substrate

of Fig. I(a).
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