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Exact Calculation of the Uncertainty on the
Input Reflection Coefficient of Arbitrary
Two Ports Due to Mismatches and
Arbitrary Reference Planes

HERMAN TROMP

Abstract—A specific problem of worst case analysis of microwave
networks is dealt with, Exact formulas are derived for the upper and lower
limits of the amplitude of the input reflection coefficient of an arbitrary
two port, in the presence of mismatched source and load and/or arbitrary
reference planes. The derivation is based on certain properties of the
bilinear transformation.

I. INTRODUCTION

T WAS SHOWN by Bandler, Liu, and Tromp [1] that,

in the worst case analysis of microwave two ports, the
effect of a mismatched source and load should not be
neglected, as compared with the effect of physical toler-
ances and model uncertainties. Explicit formulas were
derived for the extrema of the modulus of the input
reflection coefficient of a lossless two port, referred to real
normalization impedances, under various conditions of
source and load mismatches. In this paper, we shall gener-
alize those formulas.

We will consider the situation depicted in Fig. 1. The
S-matrix of the two port is referred to Z; and Z;. Source
and load impedances Zg and Z, are represented by their
reflection coefficients pg and p, with respect to Z, and Z,,
respectively. Z; and Z; (i =1,2) may be complex. Let

ps=losle’™, p.=|p|e’* (D

We assume that ¢g and ¢, can vary between 0 and 27
and that |pg| and [p, | are either given or limited by

0<]ps| <lps|™, O0<lo.|<lo.|™ (2)

This corresponds to the realistic situation, where only a
VSWR or a maximal VSWR is specified for source and
load. We are interested in the input reflection coefficient

-2l ®

in S
and we shall derive expressions for the extrema of |p,,|,
ie.,

Pin
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Fig. 1. Two port with mismatched source and load.
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Fig. 2. Two port with arbitrary reference planes.

,pin,M = Max |p1nl’ lpinlm = Min lpinl (4)
¢S’¢L ¢S,¢L
or, alternatively,
Jt= Max -, T = Min 1 (5
|pml lesls oLl ¢s. o |Pml |pml losl: oLl s, b1 ipml ( )

Another situation which shall be dealt with is shown in
Fig. 2, where the lengths of the connecting lines at input
and output (given by phase angles ¢, and ¢,) are also
arbitrary. We shall consider only real Z, Z’ (i=1,2) in
this case. The extrema in (4) and (5) will be taken over ¢,
and ¢,, too. Both completely arbitrary positions of the
reference planes and positions affected by a given uncer-
tainty will be considered.

The expressions to be derived are useful for worst case
analysis and fit into the general formulation of the toler-
ance problem as given by Tromp [2], [3]. This means that
a tolerance optimization procedure, as described by Band-
ler et al. [1], [4], [5] and Pinel and Roberts [6], can lead to
a compromise between the tolerances within the network
(i.e., its cost) and the quality of source and load. To a
certain extent the results, especially for the case of Fig. 2,
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can be used to design a subnetwork of a large network
separately, allowing for an uncertainty on the sub-
networks, connected to it, and on the length of the con-
necting lines. Our derivation [3] will be based on certain
properties of the complex bilinear transformation.

II. BILINEAR TRANSFORMATIONS
Consider the transformation (w,z,a,b,c,d complex)
az+b
= (6)
cz+d
which is known to transform circles into circles. Without
loss of generality, we can consider

w=Re?®,  0<¢<27 @)

as a circle in the w plane. The corresponding circle in the
z plane (Fig. 3) is described by

z=zy+re?, 0<6<27 8

with
_ RP*d—a*b . R|ad~ bc|
|af=Ref " " |laP = R¥cf?

2o €)
as its center and radius, respectively.

The extrema of |z| for 0< ¢ <27 are determined by the
points (see Fig. 3)

r
Zy =2z 1+———) 10
M 0( |Z01 ( )
r

= 1——) 11
= o 1- 75 (1

and are given by
|ZMI=MfXIZ|=lZO|+r (12)
2l = Min 2| = ] = 1| (13)

The corresponding points in the w plane are found
substituting (10) and (11) into (6). One can prove that |z,,|
and |z,,|, as functions of R, behave as shown in Table 1.
Typical curves are given in Fig, 4. If we now let R vary
according to

R-<R<R* (14)
then the extrema of |z| over all ¢ and all R are
(R, iR <|2
|z|* = Max|z|=] oo, it R~ <|Z| <r*(15)
&R ¢
(R, iFR™>|Z
lz.(R*), ifR*< %
I2]- = Min|z|={ o0, it <|2|<r*. (16)
R d
12RO R > %

Im z

Re z

Fig. 3. Transformed circle in the z plane.
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Fig. 4. Bilinear transformation: limits of |z| (typical).

TABLE I

BEHAVIOR OF x|z,,(R)| AND |z,,(R)|

Case ‘g < %
N % :
el |8~ A e N Y
el | 2] N 0 A A

Case ‘— > %’
e B W -
WL e NN N
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TABLE II
Zp AND Z,, WHEN arg a+arg d=arg b+argc
Case |=| < %‘ Case |Z| > %
R<Ro R > R, R < Ry R>Ro
Zm *p %5 Za %p
Zm Za 23 2 Za

The following special case of the general expressions 12)
and (13) is of interest: if

(17)

then the values of |z,,| and |z,,| are given by Table II,
where

arga+argd=argb+argc

_|15]—R|d]
IZAI_ laI_Rlcl (18)
_|181+R|d|
I BI_ |a|+R|C| (19)
and
1 ab
R0= a . (20)
Consider now the transformation
* Ik __ ok
PO A el @1)

a—wc
which does not transform circles into circles [3], but yields
the same |z| as (6). This means that all results, (12)—(20),
also apply for (21), which we therefore call the pseudobi-
linear transformation.
The results of this section can be applied to a number
of problems in microwave network theory, such as the
worst case analysis problems of Section I.

111.
In Fig. 1, we have

EFFECT OF MISMATCHES

p—p3
1—ppg

where p is the input reflection coefficient with respect to
Z}, e,
Z m 4 1

0= ZuT ZF @)

Equation (22) represents a pseudobilinear transformation.
The results of Section II can be used to find the extrema
of |p;,), for all possible pg and for a given p. Special case
(17) applies here. From (18) and (19), it is clear that the
extrema of |p;,| are a function of |p| only.

p depends only on p, and |p| can be extremized over all
possible p,, independently of pg. As a result of this, the
effects of the variations of the source and load on the
input reflection coefficient can be separated. It turns out
that this is not possible for the effect on the insertion loss.
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We have
_ap+b
PL= p+d

(24)
with

a=(1+S[A)(1+ S34,) — S1,55,4,4,
=—(AF+S7)(1+ S3,4,) + §1,55,4,
c=(1+S51,A)(AF + 53) — S1285,4,
d=—(AF+ S7)(AF + S3,) + 51,85
SH=viSu Sn=1Sm SLSH=YIVISuSy
Z*+ZF Z/—7*
YTz ST ez

A i=12. (25)

Equation (24) is a bilinear transformation. The limits
loar] and [p,,| of |p| over all ¢, can be found from (12) and
(13), and the limits |p|™ and [p|™ over all ¢, and all |o,|
from (15) and (16) (with R ~ =0, R* =|p,|*). The combi-
nation of these extrema with those derived from (22)
yields exact expressions for the extrema of |p,,|. We find

-

. 1
K™ (lparhslosD)s  if Jop] <1< 7—
lPsI
_ ) 1
K= (pulslosl)s i oy <7 <1
IPs!
. 1
orif 1 € <—
|le |Ps|
|
Pl ={ K*(enblosD). if o7 <1<lo,l (26
_ R |
K= (ol losl)s  if T <l|p,|<1
|Ps|
1
orif 1 <— <|p,,
IPSI |p l
IPsI
K™ (loals los)),  if [oar <log] <1
or if 1< |pp[ <|ps]
K+(IPM|’ IPSI)’ if lle <1< IPSI
Pinlm=1 K~ (0] los]),  if Jos] <|p,.| <1 (27
or if 1 <]pg| <|o,]
K (lombslosl),  if los| < 1<]p,,|
0, if IPmI < IPS| < |PM|
with the functions
N _ X+ x,
K™ (x},x5) T+ x,x, (28)
_ _ xl—xz - + _
K~ (o) =| {20k =K =), (9)

We also find
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[ K+ (o], los| ),

if |pL|+<I-Z-land|p|+<l<

K= (ol™,los] ),
if o |* <‘%l and

1
hOs|+

. + —3
ol ™ =1 either |o|* < ﬁ <1 (30)
s

1

los!™

or 1<|p|* <
w’
1

if |o/|* > la[or t>
locl™>| 2| orlel™ >

K_(lpl—7|pS!+)a
. b
i louf* <| 7
los|* <lel~

or |ps|* <|p|~ <1
K™ (o7, los| ™),

) b
if 1pL|+<1—g

and

either 1 <
,pini— = * (31)

and |og|* <1<|p|~

0,

or |p| ™ <Jog|*

. b
i louf* >| g

v

In many practical situations, (26), (27), (30), and (31) can
be simplified considerably, e.g., when Zg and Z, are
passive.

IV. INDEFINITE REFERENCE PLANES

Consider Fig. 2, with Z, and Z;/ (i=1,2) real. Assume
that besides ¢g, ¢;, |ps|, and |p,], also ¢, and ¢, are
variable according to

o <¢;<¢, i=1,2. (32)
Now let pg be the reflection coefficient of Z{ with respect

to Z| and pg that of Z with respect to Z; (see Fig. 2).
Then

ps=pge I (33)
and A
Ps 1

=15 "1 34

Ps 1+pgA, (34

Equation (34) represents again special case (17) of the
bilinear transformation. According to the theory of Sec-
tion II, the region in the complex plane, within which pg
can vary, due to the variations of pg, is circular. The
region of all possible pg follows then immediately from
(32) and (33). The two cases of interest are indicated in
Fig. 5. In particular, the extrema |pg|~™ and |pg]™ of
los| =|pg], over all possible pg, can be obtained from Table
II. The same can be done at the load.
If the reference planes are completely arbitrary, then

o —o >, i=1,2. (35
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Fig. 5. Indefinite reference planes; possible regions for pg and pg

(——-if o] —¢r =m), (——if ;" — o] <7).

We arrive at a situation similar to that of Fig. 1, where the
moduli of the source and load reflection coefficients (in
casu pg and p;) can now vary between (nonzero) lower
and upper limits and where their phases are completely
arbitrary. The derivation of Section III can be repeated,
now using R ~ %0 in (15) and (16). The resulting formulas
for the extrema of |p,,| become rather complicated but can
easily be implemented in a computer program.

If the reference planes are affected by an uncertainty,
but not completely arbitrary, i.e., if, for any i, ¢, —¢,” <
7, the extrema of |p,,| can be calculated as follows.

1) Assume (35); calculate the extrema of |p,,|, as indi-
cated above, as well as the p{ and p; yielding those
extrema, by appropriate substitution of (10) and (11) in
(6).

2) If both pg and p; are within their possible region (see
Fig. 5), the extrema calculated in 1) are the true limits of
ol

3) If either p§ or p; is outside its possible region, take
for the corresponding ¢, alternatively ¢, and ¢,*, and
solve the resulting extremum problems. This implies either
a situation where both ¢, and ¢, are fixed, for which the
formulas of Section III apply, or a situation where one ¢,
is fixed and the other variable, according to (35), which is
a special case of step 1). In the latter case, steps 2) and 3)
have to be repeated eventually. As a result of this proce-
dure, several extremum problems are solved. The true
bounds of |p;,| are finally found by inspection of the
different solutions which correspond to possible pg and p;.
Explicit formulas for the extrema of |p | are not available
in this case, but the procedure can be implemented in a
computer program in a straightforward way.

V. LossLess Two PorTs

If Z,=Z/ (i=1,2) are real and if the two port is lossless,
(24) is also reduced to special case (17). The resulting
formulas become simpler. We find
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K*(ISuhK,), ifK <1
1
K~ (|S,,,K,), ifK,>1and K <
| Sl
inlM = - 1 36
|p |M K (lSzzl,I(p), lfK > ( )
| S|
1
0, if 1<K < <K
| P Syl
K*(l522|,KP), ifK,>1
(|522|,Kq), if K, <1and K, >|Sy)|
0, if K, <|S|<K, <1
with
K,=K*(lpsllo.l) (38)
K, =K (lpsllo.l) (39)
and
K+(IS22|’I<p+)’ if |p,|* <1and |pg|* <1
o po | USSP Rl <
pin = 1 (40)
and K ' <
15,0
00, in all other cases
K= (|S,,K"), ifKt<|S
|pin|_ — (I 22] P ) ) Y4 | 22| (41)
0, if Kp+ >|S,,|

with K,* and K* analogous to K, and K,.1f Zg and Z;
are passxve the formulas given in [1] are found

VI

As an example, we consider the transistor HP 35821E
(bias I-=15 mA, V=15 V). Fig. 6 gives the limits of
loinl, if Jos|™ =lo,|* =02, in two cases. |o;, 5 and |p;,|*
coincide, as well as |p; |, and |p,|”. The result of a
Monte—Carlo analysis, where ¢g, ¢,, |pg|, and |p,| were
varied at random in their intervals, is also indicated. One
thousand sample points were used. If only ¢¢ and ¢, are
assumed variable, the results of a Monte—Carlo analysis
with 1000 sample points cannot be distinguished from the
bounds calculated with our formulas. Fig. 7 illustrates the
effect of arbitrary reference planes. Curves a correspond
to reference planes fixed at a nominal position and curves
¢ to completely arbitrary reference planes. For curves b, a
given error on the position of the reference planes was
assumed. In this case, both ¢, and ¢, should have one of
their extreme values to yield the extrema of |p;,|.

ExAMPLE

VIL

Explicit formulas and numerical procedures were de-
rived for the calculation of the limits of the input reflec-
tion coefficient of an arbitrar two port, under various

CONCLUSION
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Fig. 6. Input reflection coefficient of 35821E, with |pg|* =|p,|* =0.2.
Curve a: Z;=Z/=50; curve b: Z,=50+0.5j, Z,=49-2j, Z;=45+
5j, Z;=55-17j. (— —Monte-Carlo, case (a), 1000 sample points.)
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Fig. 7. Input reflection coefficient of 35821E, with |og|* =lp,|* =0.2,

Z,=50, Z{=45, Z,=49, Z;=55. Curve a: fixed reference planes;
curve b: indefinite reference planes, 10° <¢;, <40° and 90° < ¢, <
150°; and curve c: indefinite reference planes, 0° < ¢, ¢, < 360°.

conditions of source and load. The example shows that
even moderate mismatches or uncertainties on the posi-
tion of the reference planes can have a considerable
effect. They should be accounted for in any realistic
design procedure.
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An Approximate Dynamic Spatial Green’s

Function for

Microstriplines

Y. LEONARD CHOW, MEMBER, IEEE, AND IBRAHIM N. EL-BEHERY

Abstract—A dynamic model of both charge and current images is
constructed to give rise to a frequency-dependent dyadic Green’s function
in the space domain for microstriplines. While the spatial Green’s function
is approximate, its image model is very simple, and the propagation
constants calculated from it agree well with published results,

1. INTRODUCTION

HE DYADIC Green’s function in the spectral

domain for microstriplines has been derived by Den-
linger [1]. The expression of this Green’s function, how-
ever, while being exact, is quite complicated making its
use difficult in arbitrarily shaped structures.

The dyadic Green’s function in the space domain, on
the other hand, may overcome this difficulty, but it is
generally not known in a closed form. A static equivalent,
however, has been derived by Silvester [2] from a model of
charge images. The simplicity of this model and the good
physical insight it gives naturally suggest the possibility of
its extension to a dynamic model that can reasonably
approximate the dyadic Green’s function at the higher
frequencies.

While such an approach may be used to construct
dynamic Green’s functions in three dimensions for arbi-
trarily shaped microstrip structures, this paper, being a
first attempt in this direction, considers only the extension
to the Green’s function in two dimensions for microstrip-
lines.

In this paper the two-dimensional Green’s function is
defined as the kernel function of the integral equation
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Fig. 1. (a) A line current J, on a grounded dielectric substrate. (b) The
equivalent of (a): a dielectric substrate with two true currents. (c) The
model for the outside (dashed) region with true currents and charges
*Jy and *¢, and image charges o,. The magnitudes of the images
are indicated with K=(1—¢)/(1+¢,). The separation between adja-
cent images is 2d. (d) The model for the inside (dashed) region.

% HKIKNe, k(K-

/0
cﬁ
)

'+K2(K2—|)a° +K2(K-| Vo,

Epn(x) = G (%, %) Jo(x)dx’ (1)
where, according to the geometry of Fig. 1(a),
= G .(x,x) G_(x,x)
G : 7Y xx xz 2
(X X ) sz(x’x/) Gzz(x,x,) ( )

and where Jy(x) and Etan(x) are, respectively, the density
of the current vector and the tangential electric field
vector on the surface of the grounded dielectric substrate
of Fig. 1(a).
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